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Abstract

The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut
with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astro-
physical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order
algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in
three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence
simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In modern astrophysics the interplay between observations and numerical experiments plays a central role.
Typically hydrodynamical flows with high Reynolds numbers and Mach numbers are studied, and they are
modelled by the Euler equations
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E-m
qt þ divðquÞ ¼ 0

ðquÞt þ divðquuÞ þ px ¼ qf1

ðqvÞt þ divðqvuÞ þ py ¼ qf2

ðqwÞt þ divðqwuÞ þ pz ¼ qf3

Et þ divððE þ pÞuÞ ¼ qf � u

ð1:1Þ
Here q is the mass density, u = (u,v,w) is the velocity field, p is the pressure, and E is the energy density
E ¼ 1

2
qu2 þ qe with e the specific internal energy. External forces are given in units of acceleration by
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f = (f1, f2, f3). The system is closed by the equation of state that relates p to q and e. In this work we consider
ideal gases where qe = p/(c � 1) for some c > 1, and isothermal gases. An isothermal gas has constant temper-
ature T, which implies p = a2q for a ¼ RT

l , with R the gas constant and l the mean molecular weight. In a real
astrophysical flow additional physical phenomena such as magnetic fields, gravitational forces and electro-
magnetic radiation may be important, but this paper is only concerned with the hydrodynamics. The specific
physical entropy s is defined by the relation
Fig. 1.
order a
deþ p d
1

q
¼ T ds ð1:2Þ
with T = T(q,e) > 0 the temperature. The second law of thermodynamics implies that
ðq/ðsÞÞt þ divðqu/ðsÞÞ 6 0 ð1:3Þ

for any smooth, nonincreasing and convex /. In high Mach number flows this condition is needed to ensure
the dissipativity of shocks, since the viscous forces are ignored in (1.1).

To numerically solve (1.1), shock-capturing finite volume schemes are widely used. In astrophysics it is
often done with the PPM algorithm described in [4], often with an iterative method to approximate the exact
midpoint value of the Riemann fan. This was implemented in the Prometheus code in 1989, using the iterative
Riemann solver of [3] with a fixed number of iterations, see [8]. An efficient, parallelised version was then
implemented in 2001, see [12,13]. Stochastic forcing for turbulence simulations was added later, see [16,18].
Results produced by the Prometheus code have been presented in many astrophysical publications, for exam-
ple in [10,12,13,15]. We used this code from 2001 as the basis for this work, and implemented our changes into
it.

First, we switched the Riemann solver to an HLLC solver with the signal speeds of Bouchut [1,2]. As far as
we know, this is the first implementation of this advancement into an astrophysics code. It is well known that
approximate Riemann solvers like HLLC are computationally efficient and easy to implement. In addition, the
Riemann solver of Bouchut has two good properties: (a) It automatically ensures that a discrete version of the
entropy inequality (1.3) holds. (b) The density and pressure stay positive. Often, finite volume codes need to
check for each cell update whether the new data are physically reasonable, but with these two a priori esti-
mates, no checks are necessary apart from underflow treatment. The two estimates are true in the first order
case.

When using this Riemann solver in a higher order scheme, these two properties are not automatically inher-
ited. Hence, we introduced a piecewise linear reconstruction, and replaced the characteristic back-tracing with
Runge–Kutta time integration. This was done in such a way that positivity is preserved at one half the CFL-
number required in the first order case. Such a second order scheme which also satisfies the entropy inequality
is however impractical, see [5], but entropy stability for first order schemes has so far seemed to be a good
condition in practice. A different notion of stability comes from scalar conservation laws, which have solutions
with nonincreasing total variation. This notion is also important in the design of higher order methods for
systems. The reconstruction algorithm and the Runge–Kutta integration we use ensure a nonincreasing total
variation when applied to scalar equations.

This gave rise to four codes as summarized in Fig. 1. The codes RK-HLLC and PPM-HLLC both run
about 20% faster than PPM on the same data with the same resolution. However, the difference between
The table summarises the four codes we tested. Along the horizontal axis the Riemann solver changes, while vertically the higher
lgorithm varies.
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the algorithms might be larger, since only the original PPM-code was optimised. The RK-exact code is the
slowest, but it was of fundamental interest in this project to compare its accuracy to the RK-HLLC code’s.

In the remainder of this introduction we will first sum up the main ideas of the underlying PPM algorithm
in the Prometheus code. Then we will describe the new Bouchut–HLLC solver and its theoretical advantages.
The second order algorithm is outlined next, and we show how it preserves positivity. In Sections 2–4 the one-,
two- and three-dimensional test comparisons are presented. At the end there is a conclusion.

1.1. PPM and the Prometheus code

The basis of the Prometheus code is the one-dimensional PPM-method of [4] with the iterative Riemann sol-
ver from [3]. Strang splitting is then used to handle multidimensions. The crucial point of PPM is the so-called
characteristic back-tracing. This technique produces a second order approximation to the states at the cell inter-
faces at the half time step, allowing the use of the midpoint method in time. These approximate states are then
used as input to the Riemann solver. Although the overall accuracy is second order, the spatial reconstruction is
piecewise parabolic, which is reported to give better resolution than piecewise linear reconstruction. Further-
more, the accuracy at contact discontinuities is improved by an algorithm that detects them, and then steepens
the reconstructed density. There is also an algorithm that adds artificial diffusion in order to avoid oscillations
behind strong, slow-moving shocks without smearing out the solution much. The reconstruction is required to
be monotocity preserving. This means that the order of the scheme may drop locally at extremal points of a
reconstructed quantity, which means a primitive quantity in the case of PPM as in [4]. This drop in order is also
a feature of the second order reconstruction we use with the Runge–Kutta time integration.

In order to resolve shocks and shock interactions a Riemann problem is solved with the data from the back-
tracing operation as input. For the Euler equations there is no general explicit formula for the solution of the
Riemann problem, so in Prometheus an iterative procedure provides instead approximate values of the fluxes
at cell interfaces. For efficiency the number of iterations is limited to a fixed number.

1.2. The HLLC solver of Bouchut and stability

The notion of an approximate Riemann solver goes back to the Roe solver, see [14], which is based on a
local linearization of the fluxes at the cell interface. We refer to [21,2] for a modern presentation of the basic
ideas. The basic idea is to replace the exact Riemann fans in Godunov’s method with something simpler that
still gives a numerical flux that is consistent and conservative. In addition entropy consistency and positivity of
density must be somehow ensured. For this linearized solvers require additional treatment, a so-called entropy
fix.

The simplest approximate Riemann solver is the HLL solver, where the Riemann fan is replaced by a con-
stant state separated by two discontinuities moving with constant speeds Cl and Cr. A sufficient condition for
stability is that the exact Riemann solution does not have waves with speed outside the interval [Cl,Cr]. The
main weaknesses of this approach is that material contact waves are smeared out, and that the signal velocities
Cl and Cr have to be guessed. A solution to the first problem was hinted at already in [9], and was carried out
in [20], see also [21], with the so called HLLC-solver. The HLLC-solver consists of three discontinuities trav-
eling with speeds Cl, u* and Cr, where velocity and pressure are held constant across the middle wave, and u* is
this intermediate value of the velocity.

In [2], the HLLC-solver was improved by showing that it results from a relaxation system, which estab-
lished its entropy stability. Furthermore, sharp explicit formulas for the signal speeds that ensure positivity
and entropy stability could be given. We refer to these as Bouchut speeds, and they are given by formula
(2.133) and Proposition 2.18 of [2].

1.3. The new second order algorithm

When going to higher order, requiring the reconstruction to be entropy dissipative leads to impractical
methods, but there is a way to preserve positivity in a rigorous manner. In the rewritten version of Prometheus
RK-HLLC and RK-exact we used the following reconstruction, based on [2]
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As a limiter we use
minmodðal; arÞ ¼
0; alar 6 0

signðalÞmin ajalj; 1
2
ðjalj þ jarjÞ; ajarj; alar > 0

�
ð1:4Þ
with a set to 1.4. This is applied to produce the discrete differential
Dqi ¼
1

h
minmodðqiþ1 � qi; qi � qi�1Þ ð1:5Þ
and Dui, D(u^)i, D(qe)i similarly. The positivity of the reconstructed density is guaranteed since
qi � h

2
jDqij > minkðqkÞ. Conservation of momentum dictates that we take the reconstruction slope
DðquÞi ¼ qiDui þ uDqi �
h2

4
DqiDui ð1:6Þ
and similarly for D(qu^)i. Energy is conserved by replacing ei with
~ei ¼ ei �
h2

8
1� h2

4q2
i

Dq2
i Du2

i þ ðDu?Þ2i ð1:7Þ
when computing the reconstructed internal energy. The extra terms cancel out the conservation errors in ki-
netic energy caused by the linear reconstruction. Hence positivity means that qi~ei � h

2
jDðqeÞij > 0, or in other

words
h2

8
Du2

i þ ðDu?Þ2i <
1

1� h2

4q2
i
Dq2

i

qiei �
h
2
jDðqeÞij

� �
¼̂K2

i ð1:8Þ
To ensure (1.8) in a consistent way we first restrict |D(u^)i| to less than or equal to Ki, and then set Du2
i less than

or equal to K2
i � jDðunÞij

2. Note that in practice we multiply Ki with a number slightly less than one to ensure
that the inequality (1.8) is strict.

We did not apply any special treatment of material contact waves in this code version, and no artificial dif-
fusion was added at shocks.

The numerical time integration is a second order Runge–Kutta method. That is, one does two full time
steps, and then averages the resulting cell average with the initial one. This procedure preserves positivity,
and is total variation diminishing. Multidimensionality is taken care of by Strang splitting just as in the
PPM-codes.
2. One space dimension: shock tube tests of Toro

A basic setup for testing these methods are one-dimensional Riemann problems, or shock tube tests. In [21],
five very useful such test problems are given and subjected to several different Riemann solvers. The problems
are carefully devised to exhibit phenomena known to be hard to reproduce numerically.

As reference solutions we simulated all tests with 105 grid cells using the original PPM-code. In some cases
this was not locally converged due to spurious oscillations, etc., and we point out these anomalies when they
occur. In all the runs the CFL-number was 0.4, and we considered x 2 (0,1) with a resolution of 100 grid cells.

2.1. Test 1

The first test is not the most severe, but it contains a transsonic rarefaction, which nonentropic schemes
have trouble with. The initial data are
ðq; u; pÞ ¼
ð1; 0:75; 1Þ; x < 0:5

ð0:125; 0; 0:1Þ; x > 0:5

�
ð2:1Þ
All schemes handle the transsonic rarefaction without any signs of a nonentropic glitch, but there are differ-
ences in the resolution at the rear end of the rarefaction with the PPM doing the best job. However, PPM gives
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large oscillations behind the contact discontinuity compared to the other codes. With the RK-codes there is
little difference between the Riemann solvers. We note the undershoot in front of the contact, and the less
sharp resolution of the contact compared to PPM (see Fig. 2). These observations also hold true at increasing
resolution, as illustrated by the L1-errors in mass density in Fig. 3.

2.2. Test 2

Test 2 has two rarefractions going apart creating a low density region. The initial data are
ρ

Fig. 3.
in unit
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Fig. 2. Results for Toro test 1.

The table shows the L1-error in the computed mass density of Toro’s test 1 for different codes and resolutions. The errors are given
s of 10�3.
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Fig. 4. Results for Toro test 2. The results are symmetric around x = 0.5.
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The solver should be able to handle this without giving negative density or pressure. In particular, linearized
solvers have trouble with such cases. In the density plots, Fig. 4, we note a bump in the density at x = 0.5 with
the RK-exact code. We see similar tendencies for the PPM simulation, and in the PPM reference solution there
is a deep narrow bump.

For the RK-HLLC-code positivity was automatically maintained, and it is interesting that we get a better
approximation of the density value in the middle compared to PPM-HLLC, and also of the velocity, Fig. 5.
The front of the rarefaction is however best resolved by the PPM-codes.

Notice in Fig. 5 that both PPM and RK-exact (which have the same Riemann solver) has oscillations in the
velocity near x = 0.5. The RK-exact code especially had problems with this test, and positivity had to be arti-
ficially imposed for CFL-numbers larger than around 0.05. Theoretically, a CFL-number less than 0.25 should
ensure positivity with an exact Riemann solver, so this has to do with the iterative procedure in the Riemann
solver not automatically ensuring the positivity property. With the iterative solver as part of PPM however,
this seemed not to cause serious problems.

2.3. Test 3

Test 3 is a high Mach number shock tube with initial data
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Fig. 5. Results for Toro test 2. The results are symmetric around x = 0.5.
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ðq; u; pÞ ¼
ð1; 0; 1000Þ; x < 0:5

ð1; 0; 0:01Þ; x > 0:5

�
ð2:3Þ
We found little difference between the codes here apart from the expected slightly sharper resolution of the
PPM-codes, which was most prominent on the contact wave (see Fig. 6). All codes produced spurious effects
behind the rarefaction, as seen in the overshoot in the velocity plots, Fig. 7.

2.4. Test 4

The solution of test 4 has a near stationary shock, that is, the shock speed is small compared to the char-
acteristic speeds, hence if the numerical diffusion applied to this shock is high, it will be particularly pro-
nounced. The initial data are
ðq; u; pÞ ¼
ð5:99924; 19:5975; 460:894Þ; x < 0:5

ð5:99242;�6:19633; 46:0950Þ; x > 0:5

�
ð2:4Þ
Also, oscillations behind such shocks is a well known phenomenon, and in the original PPM paper, a so called
‘flattening’ algorithm was introduced which essentially adds diffusion. This algorithm was used in all the PPM
simulations here, but for this test we also tried to switch it off, resulting in oscillations in the density of mag-
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Fig. 7. Results for Toro test 3.

0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

x

ρ

Reference
PPM−HLLC
PPM

0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

x

ρ

Reference
RK−HLLC
RK−exact

Fig. 8. Results for Toro test 4.



C. Klingenberg et al. / Journal of Computational Physics 227 (2007) 12–35 19
nitude around 5% of the postshock density both for PPM and PPM-HLLC. The RK-codes only show small
oscillation here, and no special treatment was necessary. In the reference PPM solution, there are pronounced
oscillations both after the near stationary shock as well as between the contact and the right moving shock.
Both HLLC-codes smear the near stationary shock out with 1–2 grid cells more in front of the shock, as seen
Fig. 8 (we show the results from PPM with flattening). The difference of 1–2 grid cells was maintained when
refining to 200 and 400 grid cells. It is probably caused by the signal speeds of HLLC–Bouchut slightly over-
estimating the shock speeds. Otherwise we only note the lower resolution of the contact wave with the RK-
codes compared to HLLC.

2.5. Test 5

Test 5 is like test 3 with a background velocity resulting in a near stationary contact discontinuity. The ini-
tial data are
−

−

−

−

−

−

u

ðq; u; pÞ ¼
ð1;�19:59745; 1000Þ; x < 0:8

ð1;�19:59745; 0:01Þ; x > 0:8

�
ð2:5Þ
All codes handle this feature reasonably well, which was expected since both Riemann solvers exactly resolve
contact waves, see Fig. 9. Note that in this case the RK-codes have comparable resolution of the discontinu-
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Fig. 9. Results for Toro test 5.
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ities to the PPM-codes, but they overshoot the right intermediate density slightly. The oscillations occuring
behind the rarefaction in the velocity, see Fig. 10, is not reported with the first order schemes tested by Toro,
so it must have something to do with the higher order algorithms. It is especially pronounced with PPM-
HLLC, but visible in all simulations.

3. Two space dimensions: mixing layers

We now look at transitions from laminar into unstable flows in two dimensions. By the nature of the under-
lying unstable flows, although we observe differences in the output, we are not really able to infer much about
the quality of the respective codes. However, we observed that the instabilities needed to be highly developed
before any differences could be seen between the Riemann solvers. In other words, at the onset of instability
the Riemann solvers seemed to give the same results. We recall from the one-dimensional tests that changing
the Riemann solver had only a small effect on the numerical smearing. This indicates that the ‘numerical vis-
cosity’ varies little between the different schemes, and the sensitivity of our instabilities to numerical viscosity
seems to be relatively small at their onset.

3.1. Kelvin–Helmholtz instability

Two layers of fluid moving with different parallel velocities are always unstable in the absence of viscosity
and external forces. This is referred to as a Kelvin–Helmholtz instability, and seems to be an important source
of turbulence in many applications. We consider a grid-aligned jump in velocity here, and make a small peri-
odic perturbation. The initial data are q = 1, c = 1.4, and we let p vary to allow different Mach numbers. The
velocity is in the y-direction with v = 0.5 for x < 0.5, and v = �0.5 for x > 0.5, however, we moved the velocity
jump one grid cell to the left to break the symmetry. We perturb v with 2pe2px cos(2py)/100 for x < 0.5 and
�2pe�2px cos(2py)/100 for x > 0.5. This means we can compute y 2 (0,1) with periodic boundary conditions,
and in the x-direction we consider x 2 (0.1) with reflecting boundary conditions. The CFL-number was 0.8 in
all simulations.

First we take p = 1/c, which means that the relative velocity between the layers equals the sound speed. We
consider the time history of the average of 1

2
qu2, as this quantity is often used as a measure of the growth of the

instability. Fig. 11 shows log 1
2
qu2 as a function of time for the different codes. We used three different reso-

lutions, 1002, 2002 and 4002 points, and we see here that the instability growth rate increases with resolution.
This is plausible, since by linear instability theory, the growth rate is inverse proportional to the perturbation
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wavelength. The Riemann solver, however, seems to have no influence at all. We measured the CPU-times for
the different codes for this simulation with 2002 grid points until time t = 2.0. We got the following results:
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Fig. 12 shows the time evolution of the velocity field with PPM-HLLC, illustrated by streamlines at times

0.25, 0.50 and 1.0. The streamlines were produced with the intrinsic Matlab routine ‘streamslice’. Note that the
density of streamlines plotted does not accurately reflect the numerical resolution, but were chosen to give a
clear representation of the observable topological flow features. The plots from the original PPM looks very
similar. Fig. 13 shows the same but this time with the RK-HLLC code. Also with these codes we see no sig-
nificant differences between the two Riemann solvers.

Differences between the schemes only become apparent at later times. Eventually all vortices are swallowed
by the domain-centered vortex, and we see some differences in at which time t1 this happens. We used the
streamline plots to find approximately when this change in flow topology occurs. For example in Fig. 14,
we plotted the flow at time t = 20, since the PPM-simulation then still had two distinct vortices, while with
PPM-HLLC we could only see one. In Figs. 15–17 we do the same with different resolutions and codes. Since
the resolution and the underlying code also influenced the time t1, we chose different plotting times in Figs. 14–
17. In all four cases considered it is clear that the Riemann solver induces some difference in t1.
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Fig. 13. The same as Fig. 12 with RK-HLLC. (* In the plots x is on the horizontal axis, and y on the vertical axis.)
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Fig. 17. Streamlines from simulations with 4002 cells at time t = 16. RK-HLLC is shown on the left, and RK-exact right. (* In the plots x is
on the horizontal axis, and y on the vertical axis.)
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Fig. 19. Density contours from Kelvin–Helmholtz instability with Mach number 10 at ti

on the vertic

24C. Klingen
We also considered p ¼ 1
100c, giving a relative Mach number of 10. Fig. 18 shows the growth of the average

transversal kinetic energy component. The effect of the Riemann solver is indiscernible. Resolution had less
influence here than with relative Mach number 1, so we only show the data from the 2002-simulation. At Mach
numbers this high, the Kelvin–Helmholtz modes are linearly stable, and instead of Kelvin–Helmholtz rolls,
kink modes develop, see for example [11]. For the Mach 10 case differences are also very subtle. In Fig. 19,
showing filled density contours at time t = 10, one can see slightly more small scale structure with PPM than
PPM-HLLC by careful inspection of the plots. The similar plots from the RK-codes in Fig. 20 clearly shows
more smeared out structures than the PPM-codes. There is no noticeable difference between RK-HLLC and
RK-exact, which means that any effect of changing the Riemann solver is much less prominent than the smear-
ing due the RK-algorithm. The superimposed density contours in Fig. 21 also illustrate the increased numer-
ical diffusion of the RK-algorithm, and that this suppresses the effect of changing the Riemann solver.

3.2. Richtmeyer–Meshkov instability

The Richtmeyer–Meshkov instability occurs when a planar shock hits a parallel, slightly perturbed density
jump. We used the following setup to simulate this. The domain was (x,y) 2 (0,16) · (0, 1) with periodicberg et al. / Journal of Computational Physics 227 (2007) 12–35
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boundary conditions in y, and Neumann boundary conditions in x. We set up a shock tube problem in the x-
direction at x = 1.6 with density and pressure as in the first Toro test and constant velocity u = �1 in the x-
direction. We considered adiabatic gas c = 1.4 so as to coincide with the three-dimensional runs rather than
the shock tube tests. At the line x = f(y) = 3.2 + 0.2cos(2py), the density fell by a factor of 2. When the shock
goes through the initial density jump, the boundary f(y) evolves into a mushroom-like structure. In Fig. 22, we
see a slice in x-direction of the density profile at time t = 1.0. The shock has just hit the density jump, and we
see a weaker shock going through, and a reflected wave moving back towards the contact from the shock tube
problem. This last wave might cause some minor reflected waves, but otherwise the instability is not influenced
by other features. The boundary at x = 0 is transparent to the supersonic rarefaction, and we stop before the
shock reflection at x = 16 affects the instability. The CFL-number was 0.8. Again it is hard to observe differ-
ences, see Fig. 23, but it seems the original PPM resolves the ‘extremities’ of the high density region a bit shar-
per, at least they extend more.

We also illustrate the growth of the instability here by the time history of the transversal component of
kinetic energy in Fig. 24. With RK-HLLC the density jump is more smeared out before the shock hits it, which
explains the less steep slope.
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It is known that the contact wave steepening of PPM may artificially induce instabilities in certain cases.
For the PPM-codes we observed small scale structures that we believe to be numerical noise when repeating
the simulation on finer grids. However, by switching off the steepening, we got reasonable results. In Figs. 25
and 26, we compare versions of PPM and PPM-HLLC without steepening. With the highest resolution the
density profiles differ strongly, but there is no way to tell which code is better.

The RK-HLLC-code produces a more smeared out structure, see Fig. 27.
4. Forced isotropic turbulence

In many real life flows turbulence is an important feature. Since we do not know how to infer from simpler
test cases how a numerical method will treat turbulence, we now consider simulations of actual three-dimen-
sional turbulence. Because of the three-dimensional nature of turbulence, to get useful results one needs pow-
erful computational resources, and we were able to perform some parallel simulations on the Hitachi SR8000
at the Leibniz Computing Centre in Munich. The simulations were part of a larger study on parameters in
supersonic turbulence, see [17]. We considered the same type of forced isotropic turbulence experiments
described in [18]. The resolution here was 2563 equilateral grid cells, and the boundary conditions periodic
as in [18]. We refer to [16,18] for details of the experiments and the analysis tools. In addition to [18], com-
pressible turbulence simulations with PPM have been investigated by Sytine et al. [19].

The tests consisted of a constant, zero velocity initial state continuously subjected to a stochastically vary-
ing force field f. The forcing was given by evolving its Fourier transform by a so called Ornstein–Uhlenbeck
process, which is a statistically stationary stochastic process, with parameters such that the resulting force was
statistically isotropic. Only the larger wavelengths were given a nonzero contribution. Note that the Fourier
transform of a periodic function can be understood as a generalized function given by the coefficients in its
Fourier series. By varying the magnitude of the forcing, the characteristic velocity of the flow was varied cor-
respondingly. The forcing also had a free parameter f corresponding to a projection operator regulating the
solenoidality of the force field. For f = 1 the force field is divergence free, and for lower values we have pro-
gressively stronger compressive force components. We will not study the influence of this parameter here, just
note that all flows considered were highly compressible. How a gas responds to this injection of energy
depends a lot on the equation of state, as we will show.

Since these flows are highly sensitive to perturbations, it makes no sense to compare the actual solutions.
Instead we will compare statistical properties of the simulated flows, since the statistical approach has been
relatively successful in quantitatively describing turbulence, see for example [7]. Note also that each simulation
represented a different realisation of the stochastic forcing process. One way to extract statistical information
is to make a histogram of the different values assumed by a scalar quantity at a fixed time. We can call this to
make a probability distribution function (PDF). We will consider PDFs for q and the absolute value of the
vorticity x.

As an indicator of numerical dissipation we will look at the energy spectra, that is, we will look at the
energy content in each Fourier mode of the velocity field. Parseval’s theorem says that the total specific kinetic
energy equals the integral over the square of the Fourier transformed velocity field ûðk; tÞ,
Z

juðx; tÞj2 dx ¼
X

k

ûðk; tÞ � ûðk; tÞ� ð4:1Þ
where Æ* denotes complex conjugation. In other words, it is given by integrating over the energy spectrum func-
tion E(k, t), which is defined as the sum of the squares of the Fourier coefficients corresponding to each mode
where the three-dimensional wave number vector k has absolute value k,
Eðk; tÞ ¼
X
jkj¼k

1

2
ûðk; tÞ � ûðk; tÞ� ð4:2Þ
times a scaling factor. We refer to [16,18] for how this was done numerically.
It is intuitively clear that if the solution has a lot of small scale structure, it indicates low numerical diffu-

sion, although spurious oscillations could also play a role. The energy spectrum function gives a way to quan-



tify this idea for these highly complex flows, but it is also connected to deeper ideas about turbulence, in par-
ticular Kolmogorov’s theory, see for example [7].

Typically a plot of k ´ E(k, t) will show three different ranges. For the lowest wave numbers the stochastic
injection of mechanical energy dominates. Then comes what is called the inertial range, where Kolmogorov’s
theory predicts that E(k, t) drops off as k�

5
3, due to the transfer of energy from vortices of higher to lower length

scales. This ‘Kolmogorov cascade’ has been observed for low enough Mach numbers both in experiments and
numerical simulations. For the highest wave numbers numerical dissipation becomes dominant, and E(k, t)
drops off steeply. Between the inertial range and the dissipation range, one tends to observe a flattening of
E(k, t) in numerical simulations. This is called the bottleneck effect and it is still debated whether it has physical
significance, or whether it is a purely numerical effect, see [6,18] and the references in these. With the resolution
here of 2563 cells, the injection range goes straight into a bottleneck range. Since the Kolmogorov theory is
derived for incompressible flow, we also define the transversal energy spectrum Etr(k, t) which only consist
of the part of ûðk; tÞ orthogonal to k, so that we only take into account the divergence free part of the velocity.

Some dimensional quantities need to be defined first, but we choose not to go into detail about the physical
scales as they are not relevant to the code comparisons. Asymptotically the RMS (root mean squared) ampli-
tude of the force f would approach (1 � 2f + 3f2)F0 for some prescribed value F0. We use this to define the
characteristic velocity V by V = (F0L)1/2, where L is half the length l of the sides of the periodic box. Hence
V is close to the RMS velocity in the fully developed flow. With characteristic Mach number ‘Ma’ we refer to
the ratio of V to the initial sound speed. The simulations were run for five integral time scales T ¼ L

V . The forc-
ing is strongest at wave numbers k such that jkj ¼ k0 ¼ 2p

L , and zero for |k| P 2k0. With a we refer to the integer
k0l
2p ¼ 2, and the initial density is denoted by q



Fig. 29. Energy spectrum at the final time t = 5T for the adiabatic runs (left), on the right the compensated transversal spectrum. The
curves are labelled as in Fig. 28.
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the RK-HLLC code. Also note the clear bottleneck effect, which is best seen in the plot of the ‘compensated’
transversal energy spectrum function W(k, t) proportional to Etrðk; tÞk

5
3 in Fig. 29. The Kolmogorov theory pre-

dicts that W should be constant in the inertial range, and then drop off in the dissipation range.
If we look at other times, however, things become more complicated: In Fig. 30, we see the evolution of the

energy spectra.
The fact that in Fig. 28, the curves differ up to time t = 2T, we attribute to the different realisations of the

stochastic forcing. Hence one should compare statistics from the different codes only for times t > 2T. The
Fig. 30. Time history of transversal energy spectra. Data from PPM are on top, and from RK-HLLC underneath. Times are given in units
of integral time scale T.
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RK-HLLC-code gave decreasing energy spectra in time (after t = T), while the energy spectra from PPM have
no particular time dependency (after t = T). We interpret this as an increase in dissipativity of RK-HLLC in
time, and we associate it with the decrease in Mach number. The observed independence of Mach number for
PPM is related to the known fact that this scheme retains, and even improves, its accuracy as the advective
Courant number decreases. This is caused by the high order upwind advection used in PPM. The typical
advective Courant number in a cell will decrease with the RMS Mach number in these turbulence tests, hence
PPM should perform well at the lower Mach numbers.

Fig. 31 shows mass density PDF at different times. There are clear differences between the simulations in
both the high and low density regions, but this seems to be due to fluctuations inherent in the stochastic pro-
cess behind the forcing, as there is no clear trend. The vorticity PDF’s in Fig. 32 shows the same tendency as
the energy spectra. From time t = 2T, the tails in the vorticity PDF’s from PPM are clearly longer than those
of RK-HLLC, meaning that the flow contains more small scale vortices.

4.2. Isothermal gas

We also performed simulations with isothermal gas. Here the Mach number stays near constant after the
initial growth phase, as seen in Figs. 33 and 34. For this reason, we only analyse the data from the final time.
We found no significant difference between RK-HLLC and PPM, and there was even less difference between
the two PPM-codes. We show PDFs and energy spectra from simulations with Mach numbers 2.1 and 21.1 in
Figs. 35–37. Again bottleneck effects are seen in all simulations, see Fig. 38.
Fig. 31. Time history of mass density PDF for adiabatic runs. The curves are labelled as in Fig. 28. Times are given in units of integral
time scale T.

Fig. 32. Time history of |x| PDF for adiabatic runs. The curves are labelled as in Fig. 28.



Fig. 33. Time history of RMS (root mean squared) Mach number and momentum for isothermal run with characteristic Mach number
2.1. The curve from PPM is labelled ‘it’, from PPM-HLLC ‘it (HLLC)’, and from RK-HLLC ‘it (RK)’.
It is a little surprising that the RK-HLLC code does not appear comparably more dissipative in these iso-
thermal runs as it did in the adiabatic case, and in the one- and two-dimensional tests. For the isothermal test
with characteristic Mach number 21.1, it is not so unexpected. This is because the RMS Mach number was
much higher than in the adiabatic runs, and from Fig. 30 it seems that the difference is less for higher Mach
Fig. 34. Time history of RMS (root mean squared) Mach number and momentum for isothermal run with characteristic Mach number
Ma 21.1. The curves are labelled as inFig. 33.



Fig. 36. Vorticity PDFs for isothermal runs from the final time t = 5T. On the left Ma = 2.1, and on the right Ma = 21.1. The curves are
labelled as in Fig. 33.

Fig. 37. Energy spectra for isothermal runs from the final time t = 5T. On the left Ma = 2.1, and on the right Ma = 21.1. The curves are
labelled as in Fig. 33.

Fig. 38. Compensated energy spectra for isothermal runs from the final time t = 5T. On the left Ma = 2.1, and on the right Ma = 21.1.
The vertical lines represent the ‘sonic wave number’. Integrating the curve to the left of his line gives c2

s . The curves are labelled as in
Fig. 33.
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numbers. For the test with characteristic Mach number 2.1, however, the RMS Mach number is comparable
to that of the adiabatic tests at around t = 3T. Hence, in addition to Mach number, the equation of state must
be taken into account when comparing RK-HLLC and PPM. In Section 2, we noted that the most significant
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difference between the RK- and PPM-algorithms was that both RK-codes smeared out contact discontinuities
more. In the isothermal case contact waves are not present, which might explain why the codes differ less here
than in the adiabatic runs.
5. Summary

From our numerical experiments we have made the following observations:

� There is slightly more smearing of stationary shocks with HLLC–Bouchut compared to the exact solver.
� The RK-codes smear out most features more than the PPM-codes, and especially contact discontinuities.
� RK-HLLC handles small densities better than the other codes.
� All codes exhibit spurious oscillations. We see more of them with the PPM-codes, except at the near sta-

tionary shock, where PPM has a specialised ‘flattening’ procedure.
� The growth of Kelvin–Helmholtz and Richtmeyer–Meshkov instabilities appears to be little affected by

which of the two Riemann solvers are used.
� In turbulence simulations of adiabatic gas, the dissipativity of RK-HLLC seems to be less for higher than

for lower Mach numbers, while the dissipation with PPM is independent of the Mach number.
� For turbulence in an adiabatic gas with an RMS (root mean squared) Mach number less than about 5, RK-

HLLC seems to be more dissipative than PPM.
� For turbulence with an RMS (root mean squared) Mach number of 2.5 and higher in an isothermal gas,

there were no significant differences between Riemann solvers or higher algorithms.

The widespread use of PPM in the astrophysics community has lead to concern about how much the results
depend on this algorithm. We conclude that with respect to the Riemann solver their results are accurate.
However, the efficiency of the HLLC Riemann solver of Bouchut suggests that it may be used instead.
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